9 research outputs found

    Automated Echocardiographic Image Interpretation Using Artificial Intelligence

    Get PDF
    In addition to remaining as one of the leading causes of global mortality, cardio vascular disease has a significant impact on overall health, well-being, and life expectancy. Therefore, early detection of anomalies in cardiac function has become essential for early treatment, and therefore reduction in mortalities. Echocardiography is the most commonly used modality for evaluating the structure and function of the heart. Analysis of echocardiographic images has an important role in the clinical practice in assessing the cardiac morphology and function and thereby reaching a diagnosis. The process of interpretation of echocardiographic images is considered challenging for several reasons. The manual annotation is still a daily work in the clinical routine due to the lack of reliable automatic interpretation methods. This can lead to time-consuming tasks that are prone to intra- and inter-observer variability. Echocardiographic images inherently suffer from a high level of noise and poor qualities. Therefore, although several studies have attempted automating the process, this re-mains a challenging task, and improving the accuracy of automatic echocardiography interpretation is an ongoing field. Advances in Artificial Intelligence and Deep Learning can help to construct an auto-mated, scalable pipeline for echocardiographic image interpretation steps, includingview classification, phase-detection, image segmentation with a focus on border detection, quantification of structure, and measurement of the clinical markers. This thesis aims to develop optimised automated methods for the three individual steps forming part of an echocardiographic exam, namely view classification, left ventricle segmentation, quantification, and measurement of left ventricle structure. Various Neural Architecture Search methods were employed to design efficient neural network architectures for the above tasks. Finally, an optimisation-based speckle tracking echocardiography algorithm was proposed to estimate the myocardial tissue velocities and cardiac deformation. The algorithm was adopted to measure cardiac strain which is used for detecting myocardial ischaemia. All proposed techniques were compared with the existing state-of-the-art methods. To this end, publicly available patients datasets, as well as two private datasets provided by the clinical partners to this project, were used for developments and comprehensive performance evaluations of the proposed techniques. Results demonstrated the feasibility of using automated tools for reliable echocardiographic image interpretations, which can be used as assistive tools to clinicians in obtaining clinical measurements

    Automated segmentation of left ventricle in 2D echocardiography using deep learning

    Get PDF
    Following the successful application of the U-Net to medical images, there have been different encoder-decoder models proposed as an improvement to the original U-Net for segmenting echocardiographic images. This study aims to examine the performance of the state-of-the-art proposed models claimed to have better accuracies, as well as the original U-Net model by applying them to an independent dataset of patients to segment the endocardium of the Left Ventricle in 2D automatically. The prediction outputs of the models are used to evaluate the performance of the models by comparing the automated results against the expert annotations (gold standard). Our results reveal that the original U-Net model outperforms other models by achieving an average Dice coefficient of 0.92±0.05, and Hausdorff distance of 3.97±0.82

    An optimisation-based iterative approach for speckle tracking echocardiography

    Get PDF
    Speckle tracking is the most prominent technique used to estimate the regional movement of the heart based on echocardiograms. In this study, we propose an optimised-based block matching algorithm to perform speckle tracking iteratively. The proposed technique was evaluated using a publicly available synthetic echocardiographic dataset with known ground-truth from several major vendors and for healthy/ischaemic cases. The results were compared with the results from the classic (standard) two-dimensional block matching. The proposed method presented an average displacement error of 0.57 pixels, while classic block matching provided an average error of 1.15 pixels. When estimating the segmental/regional longitudinal strain in healthy cases, the proposed method, with an average of 0.32 ± 0.53, outperformed the classic counterpart, with an average of 3.43 ± 2.84. A similar superior performance was observed in ischaemic cases. This method does not require any additional ad hoc filtering process. Therefore, it can potentially help to reduce the variability in the strain measurements caused by various post-processing techniques applied by different implementations of the speckle tracking

    Segmentation of Left Ventricle in 2D echocardiography using deep learning

    Get PDF
    The segmentation of Left Ventricle (LV) is currently carried out manually by the experts, and the automation of this process has proved challenging due to the presence of speckle noise and the inherently poor quality of the ultrasound images. This study aims to evaluate the performance of different state-of-the-art Convolutional Neural Network (CNN) segmentation models to segment the LV endocardium in echocardiography images automatically. Those adopted methods include U-Net, SegNet, and fully convolutional DenseNets (FC-DenseNet). The prediction outputs of the models are used to assess the performance of the CNN models by comparing the automated results against the expert annotations (as the gold standard). Results reveal that the U-Net model outperforms other models by achieving an average Dice coefficient of 0.93 ± 0.04, and Hausdorff distance of 4.52 ± 0.9

    Automated Segmentation of Left Ventricle in 2D echocardiography using deep learning

    Get PDF
    Following the successful application of the U-Net to medical images, there have been different encoder-decoder models proposed as an improvement to the original U-Net for segmenting echocardiographic images. This study aims to examine the performance of the state-of-the-art proposed models claimed to have better accuracies, as well as the original U-Net model by applying them to an independent dataset of patients to segment the endocardium of the Left Ventricle in 2D automatically. The prediction outputs of the models are used to evaluate the performance of the models by comparing the automated results against the expert annotations (gold standard). Our results reveal that the original U-Net model outperforms other models by achieving an average Dice coefficient of 0.92±0.05, and Hausdorff distance of 3.97±0.82

    Multibeat echocardiographic phase detection using deep neural networks

    Get PDF
    Background Accurate identification of end-diastolic and end-systolic frames in echocardiographic cine loops is important, yet challenging, for human experts. Manual frame selection is subject to uncertainty, affecting crucial clinical measurements, such as myocardial strain. Therefore, the ability to automatically detect frames of interest is highly desirable. Methods We have developed deep neural networks, trained and tested on multi-centre patient data, for the accurate identification of end-diastolic and end-systolic frames in apical four-chamber 2D multibeat cine loop recordings of arbitrary length. Seven experienced cardiologist experts independently labelled the frames of interest, thereby providing infallible annotations, allowing for observer variability measurements. Results When compared with the ground-truth, our model shows an average frame difference of −0.09 ± 1.10 and 0.11 ± 1.29 frames for end-diastolic and end-systolic frames, respectively. When applied to patient datasets from a different clinical site, to which the model was blind during its development, average frame differences of −1.34 ± 3.27 and −0.31 ± 3.37 frames were obtained for both frames of interest. All detection errors fall within the range of inter-observer variability: [-0.87, −5.51]±[2.29, 4.26] and [-0.97, −3.46]±[3.67, 4.68] for ED and ES events, respectively. Conclusions The proposed automated model can identify multiple end-systolic and end-diastolic frames in echocardiographic videos of arbitrary length with performance indistinguishable from that of human experts, but with significantly shorter processing time

    Neural architecture search of echocardiography view classifiers

    Get PDF
    Purpose: Echocardiography is the most commonly used modality for assessing the heart in clinical practice. In an echocardiographic exam, an ultrasound probe samples the heart from different orientations and positions, thereby creating different viewpoints for assessing the cardiac function. The determination of the probe viewpoint forms an essential step in automatic echocardiographic image analysis. Approach: In this study, convolutional neural networks are used for the automated identification of 14 different anatomical echocardiographic views (larger than any previous study) in a dataset of 8732 videos acquired from 374 patients. Differentiable architecture search approach was utilized to design small neural network architectures for rapid inference while maintaining high accuracy. The impact of the image quality and resolution, size of the training dataset, and number of echocardiographic view classes on the efficacy of the models were also investigated. Results: In contrast to the deeper classification architectures, the proposed models had significantly lower number of trainable parameters (up to 99.9% reduction), achieved comparable classification performance (accuracy 88.4% to 96%, precision 87.8% to 95.2%, recall 87.1% to 95.1%) and real-time performance with inference time per image of 3.6 to 12.6 ms. Conclusion: Compared with the standard classification neural network architectures, the proposed models are faster and achieve comparable classification performance. They also require less training data. Such models can be used for real-time detection of the standard views

    Deep Active Learning for Left Ventricle Segmentation in Echocardiography

    No full text
    The training of advanced deep learning algorithms for medical image interpretation requires precisely annotated datasets, which is laborious and expensive. Therefore, this research investigates state-of-the-art active learning methods for utilising limited annotations when performing automated left ventricle segmentation in echocardiography. Our experiments reveal that the performance of different sampling strategies varies between datasets from the same domain. Further, an optimised method for representativeness sampling is introduced, combining images from feature-based outliers to the most representative samples for label acquisition. The proposed method significantly outperforms the current literature and demonstrates convergence with minimal annotations. We demonstrate that careful selection of images can reduce the number of images needed to be annotated by up to 70%. This research can therefore present a cost-effective approach to handling datasets with limited expert annotations in echocardiography

    Automated Analysis of Mitral Inflow Doppler Using Deep Neural Networks

    No full text
    Doppler echocardiography is a widely applied modality for the functional assessment of heart valves, such as the mitral valve. Currently, Doppler echocardiography analysis is manually performed by human experts. This process is not only expensive and time-consuming, but often suffers from intra- and inter-observer variability. An automated analysis tool for non-invasive evaluation of cardiac hemodynamic has potential to improve accuracy, patient outcomes, and save valuable resources for health services. Here, a robust algorithm is presented for automatic Doppler Mitral Inflow peak velocity detection utilising state-of-the-art deep learning techniques. The proposed framework consists of a multi-stage convolutional neural network which can process Doppler images spanning arbitrary number of heartbeats, independent from the electrocardiogram signal and any human intervention. Automated measurements are compared to Ground-truth annotations obtained manually by human experts. Results show the proposed model can efficiently detect peak mitral inflow velocity achieving an average F1 score of 0.88 for both E- and A-peaks across the entire test set
    corecore